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Abstract. A hierarchical percolation model is formulated on the Sierpinski gasket. With 
the use of position space renormalisation group methods, exact results are obtained that 
place this model in a distinct universality class from that of the geometric percolation 
model. For the first of two cases considered, p c =  1, v = 1 / D  and for the second, p , = f ,  
U = l / ( D -  l ) ,  where D is the fractal dimension of the Sierpinski gasket. The hierarchical 
model is also formulated on the triangular lattice and some preliminary results are obtained. 

1. Introduction 

This work is motivated by the desire to understand the relevant properties that determine 
the universality class of a given percolation model. In this paper we consider a 
hierarchical percolation model defined on the Sierpinski gasket. Two distinct realisa- 
tions of this model are studied using position space renormalisation group methods 
[ 11. Exact results are found for the critical concentrations and correlation length 
exponents. These results show that the two models are contained in different univer- 
sality classes, each of which is distinct from the universality class of the geometric 
percolation model [2]. The latter is known to be contained in the universality class 
of the ferromagnetic q = 1 Potts model [3,4]. In addition, the hierarchical model is 
formulated on the triangular lattice and some of its properties are discussed. 

2. Percolation models 

Apercolation model is defined as follows. At each site of a lattice place a site occupation 
variable; n, = 1 if the site is occupied, n, = 0 if the site is vacant. With each specific 
configuration of occupied sites, associate a statistical weight W({ n i } ,  p ) .  The parameter 
p is the concentration of occupied sites. For the random occupation models that we 
consider here, this weight factor has the explicit form 

W ( { n , } , p )  =p"\( l  - p ) N - " \ .  

N is the total number of lattice sites and n, = E i  ni is the total number of occupied 
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sites for a given configuration. More generally, correlations between the sites can also 
be included. In addition define a mapping 4(  R )  + C where R is a specific configuration 
of occupied sites and C is a partition of these sites into percolation clusters { C,}. The 
mapping 4 is explicitly defined by specifying a set of connection rules that determine 
the conditions under which two occupied sites are considered to be in the same cluster. 

It is the average properties of these clusters (the averages are taken over all weighted 
configurations) which are of interest in the study of a percolation model. A percolation 
transition occurs at a concentration p c  at which, on average, there first occurs a cluster 
of infinite size. This transition is continuous if the average size of the largest cluster 
diverges continuously as p c  is approached from below. It is important to stress that 
the structure of the mapping 4 defines the random occupation model. Therefore the 
universality class of a given percolation model is associated with the relevant properties 
of this mapping. 

As an example let us consider the geometric percolation model. Here the connection 
rules are exceedingly simple. The basic rule is that two occupied nearest-neighbour 
sites are defined to be in the same cluster. Repeated application of this rule allows 
the construction of all clusters for a given configuration. This rule is local in that a 
site is added to a growing cluster if at least one of its nearest neighbours is in that 
cluster. No further constraints are necessary. By an exact mapping [3,4] this model 
is known to be in the universality class of the ferromagnetic q = 1 Potts universality class. 

The directed [5, 61 and bootstrap [7, 81 models are related to the geometric model. 
The directed model possesses an anisotropic version of the isotropic geometric rule. 
This anisotropy is relevant in that the critical properties of the directed model are 
distinct from those of the geometric model [6]. In the bootstrap model, an occupied 
site is considered isolated (i.e. contained in a cluster of size one) if it has fewer than 
m occupied non-isolated nearest neighbours. Each value of m defines a distinct 
bootstrap model. The local rule of the geometric model acts only between non-isolated 
occupied sites. The geometric model is therefore equivalent to the m = 1 bootstrap 
model. On the Bethe lattice the value of m is known to be relevant [7]. On Bravais 
lattices the value of m is irrelevant if the transition is continuous [8]; however, for 
specific choices of m the transition may be driven first order. An example of the latter 
case is the rn = z bootstrap models. ( z  is the coordination number of the lattice.) For 
p < 1 all occupied sites are isolated and so all clusters are of unit size. For p = 1 there 
is one infinite percolating cluster. 

Recently a class of antiferromagnetic percolation models has been proposed and 
studied [9-121. For these models, two occupied nearest-neighbour sites need not be 
in the same cluster; additional constraints are necessary for them to coalesce. These 
additional constraints lead to the possibility of non-local connection rules [9, 111 and 
to models exhibiting two distinct transitions [ 121. A study of the critical properties of 
these models, however, has shown that all observed transitions are in the same 
universality class as the geometric model. Fried and Schick [ 121 have argued that this 
result can be traced to the generation of an effective geometric rule that becomes 
manifest under a prefacing transformation. This idea was implicit in the upper bound 
calculation of Adler et a1 [9]. 

The hierarchical model, to be defined below, has been devised in an attempt to 
suppress the generation of geometric percolation structures. On the Sierpinski gasket 
this suppression is complete. As we will see, on the triangular lattice the situation is 
more complex. Geometric rules are generated at all levels which compete with the 
hierarchical rule. 
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3. The hierarchical model 

Define on each site of the Sierpinski gasket a site occupation variable n,. The sites 
are occupied randomly with a concentration ( n , )  = p .  To define a percolation model 
we must have rules for determining when a given set of occupied sites constitutes a 
percolation cluster. The problem then is to determine the critical concentration p c ,  at 
which there first exists a percolation cluster of infinite size. 

The first model we call the m = 3 model. Here the three sites of an elementary 
up-triangle (referred to as a To-unit; see figure 1) are considered as contained in the 
same cluster when all three of these sites are occupied, otherwise not. The six sites of 
the TI-unit (see figure 1) are in the same cluster if all are occupied. This is equivalent 
to saying that all three of the To-subunits that compose TI must be percolated in order 
that Ti be considered percolated. This procedure is repeated so, for example, a 
T,,+,-unit is percolated if all three of its T,-subunits are percolated, and so on. Clearly, 
there exists a percolating cluster spanning the lattice only for p c ( 3 )  = 1 since by the 
m = 3 rules all of the sites on the lattice must be present for such a cluster to exist. 

\ 
\ 

\ / 
/ - -  ---  

Figure 1. A T,-unit section taken from an infinite Sierpinski gasket. The sites of the gasket 
are labelled i, j ,  . , . . The T,-units are the elementary up-pointing triangles, the T,-units 
are composed of three T,-units making a larger up-triangle, and so on. 

The m = 2 model is defined in a similar fashion. Here the condition for a T,,+,-unit 
to be percolated is that at least two of its three T,-subunits must be percolated. In 
this case a site is contained in the T,,,, percolation cluster only if it directly contributes 
to the percolation of the T,,-subunits, and so on. As opposed to the m = 3 model, this 
model makes it much easier for a given configuration of occupied sites to form a 
percolation cluster. Therefore we should expect that p c ( 2 )  < 1. 

In each case, as we vary p ,  we vary the average size and average distribution in 
size of the percolation clusters on the lattice. These rules therefore define two hier- 
archical percolation models: m = 3 ,  where three percolated T,,-,-subunits imply a 
percolated T,,-unit and m = 2 ,  where at least two percolated T,-,-subunits imply a 
percolated T,,-unit. 

We now construct a renormalisation transformation R such that 

R :  T l ( P )  = T o ( P ' )  (1) 
for every T,-unit on the infinite lattice. (Here T i ( p )  implies that each site of the 
TI-unit is occupied with a probability p . )  This is equivalent to tracing over the three 
internal sites of each TI-unit. From this we obtain a recursion relation for the site 
occupation probability 

P' = PY PI ( 2 a )  
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with a scale factor b = 2. The correlation length exponent is given by 

Due to the fact that the To-units share underlying sites this direct transformation 
is difficult to perform. Matters are made simple by considering a Sierpinski gasket of 
finite size M,,( p ) .  Here M,,( p )  is equivalent to a T,-unit taken by itself in which each 
site is occupied with probability p .  We then operate upon M , ( p )  n times with the 
renormalisation transformation R thus reducing it to a single site with a total re- 
normalised site probability p , ,  which is equivalent to the probability that there is a 
spanning cluster on the finite size lattice. We then have the equation 

R": M , , ( p ) =  R"-': M,, - l (p ' )  = p r  (3) 
which in the limit n taken to infinity is equivalent to the renormalisation transformation 
defined by (1). This defines the recursion relation (2). Equation (3) therefore represents 
a small-cell renormalisation transformation. The idea is to solve this equation as an 
explicit function of n and then take the limit n to infinity [13]. 

For the m = 3 model the result is rather simple. Since all of the sites of the gasket 
must be occupied in order that there be a spanning percolation cluster, there is only 
one configuration to consider, and so 

R":  M , ( p )  = p r "  (4) 

where r,,, the number of sites on a Sierpinski gasket M,,, is 

(5) 

Using (3), we find that our recursion relation has the explicit form 

which shows that p c =  1 for the critical concentration. For the correlation length 
exponent we have 

In( r n  / r n  - 1 1 1 4 3  1 - - 1.585..  . = D 
1 
-= lim 

n-m ln(2) ln(2) (7) 

where D is the fractal dimension of the Sierpinski gasket. Thus the correlation length 
diverges with a power law: (cc 11  PI-"^. This should be compared with the corre- 
sponding result for geometric percolation on the Sierpinski gasket where one finds 
[ 141: p c  = 1 and 6cc e(1-p)-2. Although neither model exhibits a percolation transition 
on the Sierpinski gasket, in the limit p to unity they exhibit distinct forms for the 
divergence of the correlation length. This therefore places the two models in distinct 
universality classes. 

For the m = 2 model, write the total renormalised site probability as 
*,, 

k = O  
p ,  = a , ( k ) p r t , - k q k  

where q = 1 - p .  pf is the total probability that the lattice M , , ( p )  possesses a percolating 
configuration. a , ( k )  is the number of percolating configurations in which k sites are 
unoccupied. Furthermore, since 

1 = ( p  + q y "  = pr + (1 -pt) (9) 
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we have 

with 

where a;( k )  is the number of non-percolating configurations with k sites unoccupied 

and { :} is the binomial coefficient. Then, from the property of the binomial 

coefficients, 
r#! r , ,  

k = O  k = O  
( a , ( k ) + a L ( k ) ) =  c { :} =2r31. 

Under the substitution p + q, percolating configurations with k unoccupied sites 
map onto non-percolating configurations with ( r ,  - k )  unoccupied sites (and vice 
versa). Since this mapping is unique, 

a , ( k )  = aL(r, - k )  ( 1 3 )  

and therefore 
r, ,  r,, 

a , ( k )=  a L ( k ) = 2 r f l - l .  
k = O  k = O  

The critical concentration is obtained from the fixed point of ( 2 ) .  Using ( 8 )  and the 
fact that we expect only one percolation transition in this model, the unstable fixed 
point is 

r,, 

k = O  
p , ( p = t ) = ( ; ) ' ~ ~  a , ( k ) = i  

which identifies p c  = 4 as the critical concentration exactly, independent of the value 
of n. The remaining two trivial (stable) fixed points are located at p = 0 and p = 1 .  

For the correlation length exponent, one can work out recursion relations to 
calculate the coefficients a, ( k )  for a specific value of n given the values at n - 1 .  Using 
( 3 )  in the form 

r,, + 1 r,i 

k = O  k = O  
a , + l ( k ) p r " + l - k q k  = a , ( k ) ( p ' ) r f l - k ( q ' ) k  

where 
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and upon numerical evaluation of these coefficients one finds that to n = 2, 1/ v2 = 
0.565.. . , I conjecture that the exact value is given by 

(18) 

which, as we will see presently, is supported by considerations of a modified hierarchical 
model. The m = 2 model therefore possesses a non-trivial percolation transition with 
a correlation length exponent that differs from both the m = 3 and the geometric models. 
This is a clear indication that the m = 2 model is in a distinct universality class from 
either of these models on the Sierpinski gasket. 

1 
-= D- 1 =0.585..  . 
V 

4. The modified hierarchical model 

Define on each site of the Sierpinski gasket two occupation variables ( n , ,  m, )  where 
the i-index labels the site and each variable is associated with one of the two elementary 
To-units connected to site i. With n, = 0, 1 and m, = 0, 1 each site can be in four states 
of relative occupation. Assume random occupation with ( n , )  = (m , )  = p. The rules for 
defining percolation clusters are exactly as before. A To-unit is considered percolated 
if, for m = 3, all three of its occupation variables are occupied and for m = 2,  if at least 
two of the three are occupied, and so on. The important feature of this modified model 
is that the elementary To-units are decoupled (they each have their own set of 
occupation variables), while at the same time the hierarchical nature of the percolation 
clusters is preserved. Therefore, we attempt to determine whether the coupling between 
the To-units in the previous model is relevant in determining its critical properties. 

We may now directly perform the renormalisation transformation of (1) as illus- 
trated in figure 2.  Here we associate the ‘total’ renormalised site probability of a given 
To-unit with the site that is not traced over in the single application of the renormalisa- 
tion transformation. For the two models under consideration we have for the recursion 
relations, with scale factor b = 2,  

m = 3  p’ = p3 (19a) 

m = 2  p’ = 3 p 2  - 2 p 3  (19b) 
so for m = 3 we find p c =  1, l / v  = D and for m = 3 we find pc  =+, 1/v = D - 1. These 
results are exactly what we found for the hierarchical model of 4 2 and support the 

\ \ 
\ \ 

ln3,m31 In , .m,)  I n z , m z l  I ii,, A,) lnz,m21 

Figure 2. The renormalisation transformation for the modified hierarchical model. We 
wri.te n, = (n,), m, = (m,)  for simplicity. 



A hierarchical percolation model 4483 

conjecture that 1/ v = D - 1 is exact for that m = 2 model. This model is therefore in 
the same universality class as the former model. The important result here is that the 
coupling of the T,-units is irrelevant (in the renormalisation group sense). Therefore 
it is the hierarchical nature of the percolation clusters that constitutes the relevant 
feature of the model and which distinguishes it from the geometric percolation model. 

5. Formulation on the triangular lattice 

When the hierarchical model is formulated on the triangular lattice it becomes possible 
for two percolated clusters to share more than a single site (a single shared site is the 
maximum allowed on the Sierpinski gasket). For example, percolated T, and T, units 
located on distinct Sierpinski gaskets embedded within the triangular lattice may 
overlap in a T,-unit for some r 3 0 (figure 3 ( c ) ) .  This additional connectivity between 
the hierarchically structured percolation clusters is the new property introduced on 
the triangular lattice. The question is whether this new property leads to a change in 
the relevant features of the hierarchical model. 

( a )  ( 6 )  I C  I 

Figure 3. The basic connection rules for the hierarchical model on the triangular lattice. 
In ( c )  O c r s m i n ( n , m ) .  

To understand how we treat this new property, we work in analogy with the 
geometric percolation interpretation for the T = 0 properties of the site-diluted Ising 
ferromagnet. 

Imagine that defined on each occupied site is a spin variable S I .  From the {Si} 
construct a lattice spin Hamiltonian H ( {  S I } )  whose ordered states (which are assumed 
degenerate in energy) correspond to the hierarchical percolation clusters when restricted 
to the Sierpinski gasket. The percolation model is then a model for the T = 0 structure 
of this site-diluted lattice spin model. The percolated clusters are interpreted as regions 
in which there is a well defined local order imposed by the Hamiltonian via the T = 0 
energy minimisation constraint. A group of clusters are considered to coalesce if they 
share ‘sufficient’ constraints: either directly by the hierarchical rules defined in P 2, or 
indirectly by shared regions of well defined order. The indirect constraint applies 
when hierarchically defined clusters on distinct embedded Sierpinski gaskets share a 
region with a well defined local order and by consistency (i.e. energy minimisation) 
this same order is imposed on those clusters within which this region is contained (i.e. 
domain walls between different possible orderings on the same percolation cluster cost 
energy). We assume throughout that a shared site is an insufficient constraint for 
clusters to coalesce (as in the formulation on the Sierpinski gasket), however a shared 
T,-unit for r z= 0 is sufficient. 



4484 H Fried 

Based on the above considerations, we formulate specific realisations of the m = 3 
and m = 2 models that reduce to their usual form on the Sierpinski gasket. In figure 
3 are shown the three basic rules for percolation cluster construction. Rules 3(a )  and 
3 ( b )  are the usual ones defined for the Sierpinski gasket formulation. In 3(a )  the 
T,,-unit is considered percolated according to the m = 2 or m = 3 rules and in 3 ( b )  we 
see the construction of a T,,+,-unit, again according to the m = 2 or m = 3 rules. These 
two rules, therefore, are responsible for imposing the hierarchical structure on the 
percolation clusters. 

The new element here is figure 3(c). For m = 3  this states that if T,, and T,,, are 
percolated (i.e. fully occupied), then as long as they share at least a mutual To-unit, 
their sum is considered a single percolation cluster. A few examples of the new types 
of percolation clusters so introduced are illustrated in figure 4 for the m = 3 model. 
For the m = 2 model this rule states that as long as the mutual T,-unit is both percolated 
and contributes to the percolation of both the T,, and T, units, then their sum constitutes 
a single percolation cluster. We emphasise that rule 3( c) is not present on the Sierpinski 
gasket since the ordered regions can share at most one site and therefore order is 
propagated solely by the hierarchical rules 3 ( a )  and 3(b) .  The present formulation 
therefore reduces to the previous one when defined on the Sierpinski gasket. 

( 0 )  t b )  

Figure 4. Examples of percolation clusters for the m = 3 model defined on the triangular 
lattice. The smallest up-triangle drawn may be considered T,,-units for 0 6  n. 

Here we present some preliminary considerations for the m = 3 model. First one 
can show that p c ( 3 )  < 1 and so there is an upper bound to the critical concentration. 
Consider the rule defined in figure 4 ( a )  restricted in application to the Tl-units 
(furthermore ignore the hierarchical rules beyond the construction of the Tl -units from 
the To-units, and the To-units from the underlying sites). By restricting ourselves only 
to this rule, we ignore all of the longer range connections which, however, would only 
make it easier to percolate. Therefore the p c  of this restricted model places an upper 
bound on the p c  of the full model. 

Since we occupy the sites of the triangular lattice at random with probability p ,  a 
given TI-unit is occupied with probability P T , ( p )  = p 6  (i.e. it contains six sites). 
Furthermore, considering the down-triangle located at the centre of a Tl-unit as 
occupied if its associated TI-unit is fully occupied, we see that this is essentially a 
nearest-neighbour geometric percolation model for these down-triangles (note that the 
down triangles themselves form a triangular lattice). That this model is only approxi- 
mately a geometric percolation model comes from the fact that the T,-units are not 
distributed completely randomly (a detailed discussion of this can be found in [12]). 
However, the correlations in the T,-distribution can only lead to a suppression of the 
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critical concentration. For the nearest-neighbour geometric percolation model the 
critical concentration is known to be exactly [ 151 p c  = 5 ,  which implies that PT,( p c )  S 4 
or p,SO.891. Monte Carlo calculations on this restricted model indicate that [12] 
pc  = 0.88 i 0.02 and the calculated exponents are numerically consistent with those of 
the geometric percolation model. 

We have shown that p c  for the full m = 3 model is bounded from above and for a 
restricted model we find geometric percolation exponents. These results indicate that 
the m = 3 model may be contained in the geometric percolation universality class, 
though we have only argued from the lowest order (i.e. shortest range) in the connection 
rules. Furthermore we have not ruled out the possibility that p c  = 0 due to the presence 
of long range (and possibly infinite range) connections. For example, in the geometric 
percolation model with nth-neighbour connections for all n (including n = KJ) the 
percolation order parameter has the exact form P( p )  = p ,  thus pc  = 0, since all occupied 
sites are always contained in one cluster (also p = 1, which is the mean-field/Bethe 
lattice result). An argument against this possibility for the m = 3 model is the following: 
the only manner in which an infinite range connection is possible in this model is 
between two infinite Sierpinski gaskets. Since the existence of an infinite size Sierpinski 
gasket implies the existence of three rows of sites that are completely occupied, for 
p # 1 this has negligible probability. So there are no infinite range connections and 
therefore the claim is that pc> 0. 

In summary, there are indications that the m = 3 model formulated here is contained 
in the geometric percolation universality class, though the approximations made leave 
out much of the structure of the full model. The m = 2 model is much more complex, 
though the arguments for the upper bound to p c  in the m = 3 model also hold here 
since it can only be easier to percolate in the m = 2 model. 

6. Conclusion 

We have presented here two versions of a hierarchical percolation model on the 
Sierpinski gasket and some exact results for the percolation properties have been 
obtained. These results show that on the Sierpinski gasket the hierarchical percolation 
model is in a distinct universality class from that of the geometric percolation model 
on the same lattice. Furthermore, through consideration of a modified hierarchical 
model we have identified an irrelevant aspect of the original model, showing that it is 
the hierarchical nature of the percolation clusters that is relevant. Finally the hierar- 
chical model was formulated on the two-dimensional triangular lattice and some 
preliminary results indicate that the increased connectivity introduced on this lattice 
is relevant for the m = 3 model and, furthermore, that it may be contained in the 
geometric percolation universality class. 
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